If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8z+4z^2+2=12
We move all terms to the left:
8z+4z^2+2-(12)=0
We add all the numbers together, and all the variables
4z^2+8z-10=0
a = 4; b = 8; c = -10;
Δ = b2-4ac
Δ = 82-4·4·(-10)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{14}}{2*4}=\frac{-8-4\sqrt{14}}{8} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{14}}{2*4}=\frac{-8+4\sqrt{14}}{8} $
| M1=2x+4 | | M4=4x-2 | | (g+2.1)/2=1.9 | | 15x-6x-5=2x+23 | | 23r+5=28 | | 4(5+6n)-3n=104 | | P=5(m+10) | | 3x-11=9x+13 | | 3(9+m)=30 | | 20=5(x-8) | | 5m+3=7-3m | | 2(x+2)=-6+2x | | 2y+33=63 | | 1a÷5+5=2 | | -(x-4)=2x-5(x+1 | | 4k-10=2+7k | | 3u−9u=–6u | | 7(h-87)=14 | | -4√43-3x+18=-2 | | -54c-12=-34-58c | | 11-2c=-7 | | 5b+8(b+4)=97 | | 7t+10=6t-3 | | -10+5z=85 | | -8x-(-2)=2x-18 | | 5x+89=2x-62 | | 9(n+5)=225 | | 3x-11=9+13x | | 7(p-4)-28=-35+21 | | 8x+4x+3=3x+21 | | G(4x-2)=10 | | x-2x+x=57.5 |